Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina.

نویسندگان

  • Hongyan Li
  • Zhijing Zhang
  • Michael R Blackburn
  • Steven W Wang
  • Christophe P Ribelayga
  • John O'Brien
چکیده

Gap junctions in retinal photoreceptors suppress voltage noise and facilitate input of rod signals into the cone pathway during mesopic vision. These synapses are highly plastic and regulated by light and circadian clocks. Recent studies have revealed an important role for connexin36 (Cx36) phosphorylation by protein kinase A (PKA) in regulating cell-cell coupling. Dopamine is a light-adaptive signal in the retina, causing uncoupling of photoreceptors via D4 receptors (D4R), which inhibit adenylyl cyclase (AC) and reduce PKA activity. We hypothesized that adenosine, with its extracellular levels increasing in darkness, may serve as a dark signal to coregulate photoreceptor coupling through modulation of gap junction phosphorylation. Both D4R and A2a receptor (A2aR) mRNAs were present in photoreceptors, inner nuclear layer neurons, and ganglion cells in C57BL/6 mouse retina, and showed cyclic expression with partially overlapping rhythms. Pharmacologically activating A2aR or inhibiting D4R in light-adapted daytime retina increased photoreceptor coupling. Cx36 among photoreceptor terminals, representing predominantly rod-cone gap junctions but possibly including some rod-rod and cone-cone gap junctions, was phosphorylated in a PKA-dependent manner by the same treatments. Conversely, inhibiting A2aR or activating D4R in daytime dark-adapted retina decreased Cx36 phosphorylation with similar PKA dependence. A2a-deficient mouse retina showed defective regulation of photoreceptor gap junction phosphorylation, fairly regular dopamine release, and moderately downregulated expression of D4R and AC type 1 mRNA. We conclude that adenosine and dopamine coregulate photoreceptor coupling through opposite action on the PKA pathway and Cx36 phosphorylation. In addition, loss of the A2aR hampered D4R gene expression and function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling.

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by ...

متن کامل

Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina

Retinal degeneration (RD) encompasses a family of diseases that lead to photoreceptor death and visual impairment. Visual decline due to photoreceptor cell loss is further compromised by emerging spontaneous hyperactivity in inner retinal cells. This aberrant activity acts as a barrier to signals from the remaining photoreceptors, hindering therapeutic strategies to restore light sensitivity in...

متن کامل

Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina.

Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from si...

متن کامل

Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina.

Horizontal cells in an isolated wholemount preparation of the mouse retina were injected with Lucifer yellow and neurobiotin to characterize both the pattern of gap junctional connectivity and its regulation by dopamine. The injected horizontal cells had a uniform morphology of a round cell body, a compact dendritic tree, and an axon, which could sometimes be traced to an expansive terminal sys...

متن کامل

Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina.

The axon terminals of the H1 horizontal cells of the turtle retina are electrically coupled by extensive gap junctions. Dopamine (10 nM to 10 microM) induces a narrowing of the receptive field profile of the H1 horizontal cell axon terminals, increases the coupling resistance between them, and decreases the diffusion of the dye Lucifer Yellow in the network formed by the coupled axon terminals....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 7  شماره 

صفحات  -

تاریخ انتشار 2013